Utility of small-animal positron emission tomographic imaging of rats for preclinical development of drugs acting on the serotonin transporter.
نویسندگان
چکیده
Visualization of neurotransmission components in living small animals using positron emission tomography (PET) has the potential of contributing to the preclinical development of neuroactive drugs, although it is yet to be examined whether quantitative animal PET data on candidate compounds can be extrapolated to humans. Here, we investigated the comparability of the occupancies of serotonin transporter (5-HTT) by therapeutic agents in rat PET studies with our predetermined data from ex- vivo animal experiments and clinical PET scans. Rats were treated with varying doses of fluvoxamine and a newly developed compound, (2S)-1-[4-(3,4-dichlorophenyl) piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride (Wf-516), and underwent PET scans with [11C]3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([11C]DASB), a selective radioligand for in-vivo quantification of 5-HTT. PET images indicated a reduction of [11C]DASB binding to 5-HTT as a function of the doses and/or plasma concentrations of fluvoxamine and Wf-516. The doses of these drugs at half-maximal effect (15.2 mg/kg and 3.1 mg/kg, respectively), determined that using binding potentials for [11C]DASB, were comparable to those estimated by our previous ex-vivo measurements in rats (4.5 mg/kg and 1.1 mg/kg, respectively), as there was only a 3-fold difference between these results. Moreover, the plasma concentration of fluvoxamine needed for 50% occupancy of central 5-HTT (6.1 ng/ml) was almost equivalent to the value determined in human PET studies (4.6 ng/ml). These findings support the view that the conjunctive use of small-animal PET and [11C]DASB facilitates a quantitative comparison of in-development drugs targeting 5-HTT with established inhibitors and a predictive estimation of their plasma concentrations exerting therapeutic effects in humans.
منابع مشابه
Small-Animal Single-Photon Emission Computed Tomographic Imaging of the Brain Serotoninergic Systems in Wild-Type and Mdrla Knockout Rats.
The pharmacokinetic properties of radiotracers are crucial for successful in vivo single-photon emission computed tomographic (SPECT) imaging. Our goal was to determine if MDR1A-deficient animals could allow better SPECT imaging outcomes than wild-type (WT) animals for a selection of serotoninergic radioligands. Thus, we compared the performances of 123I-p-MPPI, 123I-R91150, 123I-SB207710, and ...
متن کاملImaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography
Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and...
متن کاملAn overview on Ga-68 radiopharmaceuticals for positron emission tomography applications
Gallium-68 a positron emitter radionuclide, with great impact on the nuclear medicine, has been widely used in positron emission tomography (PET) diagnosis of various malignancies in humans during more recent years especially in neuroendocrine tumors (NETs). The vast number of 68Ge/68Ga related generator productions, targeting molecule design (proteins, antibody fragments,...
متن کاملSmall-animal single-photon emission computed tomographic imaging of the brain serotoninergic systems in wild-type and mdr1a knockout rats
The pharmacokinetic properties of radiotracers are crucial for successful in vivo single-photon emission computed tomographic (SPECT) imaging. Our goal was to determine if MDR1A-deficient animals could allow better SPECT imaging outcomes than wild-type (WT) animals for a selection of serotoninergic radioligands. Thus, we compared the performances of 123I-p-MPPI, 123I-R91150, 123I-SB207710, and ...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 12 8 شماره
صفحات -
تاریخ انتشار 2009